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Abstract. Ab initio calculations have been carried out to study the magnetic dipole and electric quadrupole
hyperfine structure constants of 205Pb+. Many-body effects have been considered to all orders using the
relativistic coupled-cluster theory in the singles, doubles and partial triples approximation. The trends of
these effects are found to be different from atomic systems that have been studied earlier.

PACS. 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding – 31.15.Ar
Ab initio calculations – 31.15.Dv Coupled-cluster theory – 31.30.Gs Hyperfine interactions and isotope
effects, Jahn-Teller effect

1 Introduction

With the advent of ion trapping techniques, it has become
possible to perform high precision measurements of differ-
ent atomic properties; including hyperfine structure con-
stants for the ground and low-lying excited states of stable
isotopes [1,2]. Studies of these interactions have served as
stringent tests of relativistic many-body theories. It has
been found that the behavior of electron correlation in
the hyperfine interactions in the d-states is substantially
different from those of s- and p-states [3]. The underlying
reason for this is the strong and unusual core-polarization
effects associated with the former.

The work presented in this paper is carried out using
the relativistic coupled-cluster (RCC) theory. It is equiva-
lent to all orders relativistic many-body perturbation the-
ory. Core-polarization and pair-correlation effects which
are important for such calculations are computed to all
orders in this theory. It has been successfully applied to
heavy atomic systems with a single valence electron [4,5].

205Pb is one of the stable isotopes of lead which has a
lifetime about 1.5×107 years. The nuclear structure of this
isotope is different from the other stable isotope, 207Pb.
It’s nuclear magnetic moment and electric quadrupole mo-
ment are non-zero. Theoretical studies of the magnetic
dipole and electric quadrupole hyperfine structure con-
stants of 205Pb+ are the focus of the present work.

There are relatively few measurements of the hyperfine
structure constants for the excited states of heavy atoms
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and ions. It is certainly worthwhile to perform highly cor-
related calculations of these quantities for Pb+ as it could
be a promising candidate for the observation of parity non-
conservation [6]. This theoretical effort could motivate ex-
perimentalists to carry out high precision measurements
of 205Pb+.

In Section 2 of this paper, we give an outline of the
RCC theory and in Section 3 we discuss the pertinent
details of the calculation. The results of our calculations
are presented and discussed in Section 3 and finally we
make some concluding remarks in Section 4.

2 Theory

In order to obtain the RCC wavefunction for Pb+, we
require the closed-shell Pb++ wavefunction, which is given
in terms of the lowest order Dirac-Fock (DF) wavefunction
|ΦDF 〉, as

|Ψ〉 = Ω|ΦDF 〉, (2.1)

where in conventional many-body perturbation theory, the
wave operator, Ω is expressed in powers of the residual
interaction, Ves =

∑
i<j

1
rij

− ∑
i UDF (ri). This results in

a hierarchy of approximations for the correlation energy
and the wavefunction.

The coupled cluster theory is based on the following
exponential ansatz for the closed-shell wave operator [7]

Ω = N [exp(T )], (2.2)
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where the cluster operator T is expressed in terms of the
connected diagrams of the wave operator. The operator
T also can be expressed in terms of the cluster operators
Tn corresponding to different orders of excitations n of
the core electrons from the DF state, |ΦDF 〉, explicitly
defined by,

T = T1 + T2 + ...

=
∑

ap

a†
paatpa +

1
4

∑

abpq

a+
p a+

q abaatpq
ab + ..., (2.3)

with a, b, c, ... (p, q, r, ...) representing occupied (unoccu-
pied) orbitals. tpa is the cluster amplitude corresponding
to the single excitation from the orbital a to p and so
on. Termination of the series at T2, results in the coupled
cluster theory with single and double excitations (CCSD).
The Breit interaction [8] which is four orders of magnitude
smaller than the Coulomb interaction has been neglected
in the present work.

For a single valence atomic system the wavefunction
in the RCC method can be written as [7,9]

|Ψv〉 = eT {1 + Sv}|Φv〉, (2.4)

with the new reference state

|Φv〉 = a†
v|ΦDF 〉, (2.5)

for the given valence electron v; Sv represents excitation
operators which excite at least the valence electron. The
explicit form of this operator can be written as

Sv = S1v + S2v + ...

=
∑

p�=v

a+
p avsp

v +
1
2

∑

bpq

a+
p a+

q abavs
pq
vb + ... (2.6)

An approximate treatment of the triple excitations to
the CCSD method is included by contracting the resid-
ual Coulomb operator, which effectively forms a two-
body operator, and the double-excitation operators T2 and
S2v [10], thereby defining the CCSD(T) approximation

Spqr
vbc =

̂VesT2 + ̂VesS2v

εv + εb + εc − εp − εq − εr
, (2.7)

where εi is the orbital energy of the corresponding ith
electron.

3 Method of calculation

For computational simplicity, the T amplitudes are solved
first for the closed-shell Pb++ and then the valence elec-
tron is attached to calculate the open-shell wavefunctions.
The matrix equations for solving the correlation energy
and the T amplitudes are given by

〈ΦDF |HN |ΦDF 〉 = ∆Ecorr (3.1)

〈Φ∗
DF |HN |ΦDF 〉 = 0, (3.2)

where HN is the normal ordering Hamiltonian which can
be written as HN = fN + VN , sum of one-body and two-
body terms. In the above equation, HN is defined as HN =
e−T HNeT , ∆Ecorr is the correlation energy and |Φ∗

DF 〉
corresponds to excited states from |ΦDF 〉.

For the open-shell RCC calculations, the Sv operators
are solved using the following equations

〈Φv|HN{1 + Sv}|Φv〉 = −∆Ev (3.3)

〈Φ∗
v|HN{1 + Sv}|Φv〉 = −〈Φ∗

v|{Sv}|Φv〉∆Ev, (3.4)

where ∆Ev is the ionization potential (IP) energy of the
corresponding valence electron v. Similarly |Φ∗

v〉 are the
excited states from |Φv〉.

The relativistic hyperfine Hamiltonian is given by [11]

Hhfs =
∑

k

M(k) · T(k), (3.5)

where M(k) and T(k) are spherical tensor operators of
rank k. In first-order perturbation theory, hyperfine ener-
gies Ehfs(J) of the fine-structure state |JMJ〉 are expecta-
tion values of the hyperfine interaction Hamiltonian. De-
tails of the expression are given by Cheng and Childs [11].
The magnetic dipole and electric quadrupole hyperfine en-
ergies are defined by

EM1 = AK/2 (3.6)

and

EQ2 =
B

2
3K(K + 1) − 4I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
, (3.7)

respectively. Here I and J being the total angular momen-
tum of the nucleus and the electron state, respectively,
and K = 2〈I · J〉. The magnetic dipole hyperfine con-
stant A and electric quadrupole hyperfine constant B are
defined as

A = µNgI
〈J ||T (1)||J〉

√
J(J + 1)(2J + 1)

(3.8)

and

B = 2eQ

[
2J(2J − 1)

(2J + 1)(2J + 2)(2J + 3)

]1/2

〈J ||T (2)||J〉,
(3.9)

respectively, where µN is Bohr magneton, gI = µI/I with
µI and I are the nuclear dipole moment and spin, and Q
is nuclear quadrupole moment.

The expectation value for a general one particle opera-
tor O in a given valence electron (v) state can be expressed
in RCC theory as

〈O〉v =
〈Ψv|O|Ψv〉
〈Ψv|Ψv〉

=
〈Φv |{1 + S†

v}eT †
OeT {1 + Sv}|Φv〉

1 + Nv

=
〈Φv |{1 + S†

v}O{1 + Sv}|Φv〉
1 + Nv

. (3.10)
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Fig. 1. Hyperfine constants evaluating
Goldtone diagrams from Oo.b.. Lines with dou-
ble arrows represent valence orbital (v), lines
with upward arrow and lines with downward
arrow represent virtual orbitals (p, q, r, ...)
and occupied orbitals (a, b, c, ...), respectively.
Solid lines represent all order RCC operators
and doted lines represent hyperfine operator
dressed with T operators.

In the CCSD approximation, the above expression is
given by

see equation (3.11) below.

We have defined in the above expressions

O = eT †
OeT (3.12)

and

Nv = 〈Φv|S†
v[eT †

eT ] + S†
v[e

T †
eT ]Sv + [eT †

eT ]Sv|Φv〉
= 〈Φv|S†

vnv + S†
vnvSv + nvS

†
v|Φv〉. (3.13)

For computational simplicity we evaluate the matrix ele-
ments of any operator in two steps. We expand O using
Wick’s general theorem [7] as

O = (eT †
OeT )f.c. + (eT †

OeT )o.b. + (eT †
OeT )t.b. + ...,

(3.14)

where we have used the abbreviations f.c., o.b. and t.b. for
fully contracted, effective one-body and effective two-body
terms respectively. In this expansion of O, the effective
one-body terms are computed keeping terms of the form of

Oo.b. = O + T †O + OT + T †OT. (3.15)

We have shown the Goldstone diagram representation of
the above expression in Figure 1. The calculation proce-
dure for these terms are given by Geetha et al. [4]. They
are finally connected with Sv and S†

v operators in the
evaluation of properties. Contributions due to the effective

two-body terms from O are constructed using the proce-
dure shown diagrammatically in our earlier works [4,12]
and computed directly during the calculation of proper-
ties. The following types of terms are considered for the
construction of the effective two-body terms

Ot.b. = OT1 + T †
1 O + OT2 + T †

2O. (3.16)

Other effective terms correspond to higher orders in the
residual Coulomb interaction and are neglected in the
present calculation. A similar procedure has been followed
to account for the normalization factor.

The contributions from the normalization factors for
the corresponding valence electron v that are given in Ta-
bles 3 and 4, were obtained using the following relations:

Norm = 〈Ψv|O|Ψv〉
{

1
1 + Nv

− 1
}

. (3.17)

4 Results and discussions

The starting point of our calculations is the generation
of the DF orbitals for 205Pb++. These orbitals are con-
structed as linear combinations of Gaussian type orbitals
(GTOs) as given by Chaudhuri et al. [13]. It has been
found [6] that the RCC calculations based on this choice
of GTOs provide accurate A-values for the low-lying states
of 207Pb+. In the present work, we have used similar basis
functions to calculate both A- and B-values of ground and
some of the important excited states of 205Pb+.

In Table 1, we present A and B hyperfine structure
constants of the low-lying states of Pb+. We use the Landé

〈O〉v =
〈Φv|O + S†

1vO + S†
2vO + OS1v + OS2v + S†

1vOS1v + S†
2vOS1v + S†

1vOS2v + S†
2vOS2v|Φv〉

1 + Nv
(3.11)
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Table 1. A and B results of 205Pb+ using DF and RCC methods.

6p1/2 6p3/2 7s1/2 7p1/2 7p3/2 6d3/2 6d5/2 8s1/2

A
DF 2765.54 220.58 1879.06 476.34 43.84 19.05 7.53 687.77
RCC 3099.5 149.7 2680.3 543.7 74.8 –10.03 60.97 929.3
B
DF 377.81 75.09 11.08 13.07
RCC 464.6 99.3 50.7 56.9
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Fig. 2. Diagrammatic representation of the relation between
pair-correlation (a) and core-polarization (b) effects from CC
and MBPT methods. In the pair-correlation diagram p �= v.
All order RCC operators are shown with solid lines whereas
residual interaction lines are shown with dashed lines. The pure
hyperfine operator is shown by dashed line with single dots.

nuclear g-factor, gI = 0.28468 to calculate A and nuclear
quadrupole moment, Q = 0.234 to calculate B [14]. From
the differences of the DF and RCC results given in Table 1,
it is evident that for both the hyperfine constants A and
B the electron correlation effects vary from (10–710)%.

All the core orbitals were excited in our calculations.
The core-polarization effects, which are the largest con-
tributors to the hyperfine constants of the 6p3/2 state
of 207Pb+ [6] and the d5/2 states of the alkaline earth
ions [15], have been accounted to all orders through the
OS2v term. It was also found from the hyperfine structure
studies of the s1/2 and p1/2 states in the alkaline earth
ions that pair-correlation and core-polarization effects are
important (see Figs. 2a and 2b for the definitions of all or-
der pair-correlation and core-polarization effects, respec-
tively). In order to appreciate the importance of these ef-
fects in Pb+, we present their contributions in Table 2.
Comparison of these results with their corresponding DF
values from Table 1, brings out some distinct many-body
features of the system. The most prominent among them
is the size of the core-correlation and core-polarization ef-
fects for the d-states. As in the case of some of the alkaline
earth ions, the sign of the core-polarization effect in the
d5/2 state is opposite that of the DF value and the net con-
tribution is 710% of the corresponding DF value. However,
unlike those alkaline earth ions [15] the final RCC result
has the same sign as the DF result. This is due to the large

Table 2. The contributions of core-correlation, core-
polarization and pair-correlation of A and B results in 205Pb+.

States Core-corr. Core-pol. Pair-corr.
A
7p3/2 –0.68 15.17 6.01
6d3/2 –1.02 11.13 9.30
6d5/2 –0.48 –15.73 3.45
8s 70.29 144.23 139.92
B
6p3/2 29.26 79.19 35.55
7p3/2 3.34 15.78 10.29
6d3/2 –0.65 17.87 5.44
6d5/2 –0.88 23.46 5.96

Table 3. Contributions of different coupled-cluster terms to
the Pb+ magnetic dipole hyperfine structure constant (A). cc
stands for the complex conjugate part of the corresponding
terms.

Terms 6p3/2 7p3/2 6d3/2 6d5/2 8s1/2

state state state state
O (DF) 220.58 43.84 19.05 7.53 687.77

O 231.07 44.52 20.07 8.01 617.48

OS1v + cc 18.83 6.01 9.30 3.45 139.92
OS2v + cc –141.96 15.17 11.13 –15.73 144.23

S†
1vOS1v 0.38 0.21 1.09 0.38 7.92

S†
1vOS2v + cc 0.14 –0.86 2.02 –2.08 4.85

S†
2vOS2v + cc 46.74 11.04 –54.93 68.91 29.74

Important effective two-body terms of O

S†
2vOT1 + cc 0.48 –0.03 –0.03 –0.01 1.03

S†
2vOT2 + cc –3.03 –0.44 0.74 0.26 –3.61

Norm –1.61 –0.69 0.39 –2.21 –10.06

positive contributions from the S†
2vOS2v term, shown in

Table 3. Therefore, it is imperative to consider such terms
to obtain accurate results.

The role of electron correlation in the hyperfine in-
teractions in 45Sc and 89Y has similarities [3] with Pb+

even though those systems are neutral and have differ-
ent electronic configurations. Another interesting feature
of the present study on 205Pb+ is that the RCC result of
the A-value of 6d3/2 is of opposite in sign than that of
the DF result. This trend is different from the other d3/2

states in alkaline earth ions [3,16]. The main reason for
this behavior is due to another unusual contribution from
S†

2vOS2v. The core correlation effect on B-values though
reduces as higher excited states are considered, which is
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Table 4. Contributions of different coupled-cluster terms to
the Pb+ electric quadrupole hyperfine structure constant (B).

Terms 6p3/2 7p3/2 6d3/2 6d5/2

state state state state
O (DF) 377.81 75.09 11.08 13.07

O 348.55 71.56 11.73 13.95

OS1v + cc 35.55 10.29 5.44 5.96
OS2v + cc 79.19 15.78 17.87 23.46

S†
1vOS1v 0.87 0.36 0.64 0.65

S†
1vOS2v + cc 2.18 0.62 2.27 2.75

S†
2vOS2v + cc 10.11 2.56 14.26 11.75

Important effective two-body terms of O

S†
2vOT1 + cc –0.72 –0.05 –0.02 –0.02

S†
2vOT2 + cc –5.19 –0.76 0.43 0.46

Norm –4.89 –0.93 –2.02 –2.07

expected, but contributions to the d-states are not similar
to the p-states. This is evident from the B-values given in
Table 2.

Tables 3 and 4 present the important effective two-
body terms obtained from O = eT †

OeT , but they con-
tribute very little. One can therefore justifiably ignore the
higher order terms given in equation (3.15) and save com-
putational time. The correlation effects of the A-values of
other states presented in Table 1, behave the same way as
in 207Pb+ [6].

5 Conclusion

The RCC theory has been employed to study the mag-
netic dipole and electric quadrupole hyperfine structure
constants of the 205Pb+. Strong electron correlations ef-
fects are found in the d-states and their behavior is dif-
ferent from other systems studied earlier. Experiments to
measure these quantities will constitute important tests of
the relativistic coupled-cluster theory.

We are grateful to Prof. Werth for valuable discussions and
suggestions for this calculation. The calculations were carried
out using the Tera-flop Supercomputer at C-DAC, Bangalore,
India.
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